
CHENNAI MATHEMATICAL INSTITUTE

Paths, Cycles and Permanent:
A bridge between Combinatorics and

Algebra

Author:
Kishlaya JAISWAL

Supervisor:
Dr. Samir DATTA

A thesis submitted in fulfillment of the requirements
for the degree

Master of Science
in

Computer Science

May 27, 2021

https://www.cmi.ac.in/
https://www.cmi.ac.in/~kishlaya/
https://www.cmi.ac.in/~sdatta/
https://www.cmi.ac.in/


i

Declaration of Authorship
I, Kishlaya JAISWAL, declare that this thesis titled, “Paths, Cycles and Permanent:
A bridge between Combinatorics and Algebra” and the work presented in it are my
own. I confirm that:

• This work was done wholly or mainly while in candidature for a research de-
gree at this University.

• Where any part of this thesis has previously been submitted for a degree or
any other qualification at this University or any other institution, this has been
clearly stated.

• Where I have consulted the published work of others, this is always clearly
attributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have
made clear exactly what was done by others and what I have contributed
myself.

Signed: Kishlaya Jaiswal

Date: May 27, 2021



ii

Abstract

In this report, we survey papers on disjoint paths and cycles, which include
Björklund and Husfeldt’s algorithm for finding shortest 2-disjoint paths in undi-
rected graphs [BH19] and Wahlström’s algorithm for finding a cycle passing through
given points [Wah13], both of which solve a combinatorial problem by encoding it
into a similar algebraic structure.

[BH19] algorithm requires computing the permanent mod 4 of matrix of integer
polynomials which is based on Gaussian Elimination, known to be highly sequen-
tial. We present a parallel algorithm for computing permanent mod 2k of a matrix
of univariate integer polynomials. It places the problem in ⊕L ⊆ NC2. This extends
the techniques of [Val79], [BKR09] and [BH19] and yields a (randomized) parallel al-
gorithm for shortest 2-disjoint paths improving upon the recent (randomized) poly-
nomial time algorithm [BH19]. We also recognize the disjoint paths problem as a
special case of finding disjoint cycles, and present (randomized) parallel algorithms
for finding a shortest cycle and shortest 2-disjoint cycles passing through any given
fixed number of vertices or edges.

Towards the end, we also discuss Schrijver’s algorithm of finding disjoint paths
in planar directed graphs [Sch94], which addresses a similar problem but using a
completely different set of algebraic tools.
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Chapter 1

Introduction

In the broad light of day
mathematicians check their equations
and their proofs, leaving no stone
unturned in their search for rigour.
But, at night, under the full moon, they
dream, they float among the stars and
wonder at the miracle of the heavens.
They are inspired. Without dreams
there is no art, no mathematics, no life.

Michael Atiyah

1.1 Overview

1.1.1 Disjoint Paths

Broadly we are concerned with the problem of finding disjoint paths between
specified pairs of vertices in any given graph, and several variants of this problem.
For instance, is the graph directed or undirected? Is the graph planar? Can we find
shortest such paths? and many other interesting questions.

To begin with, let us first formally describe the problem DP(k):

Input: a graph G and k pairs of vertices {(si, ti) | i ≤ k} on G

Output: paths Pi from si to ti such that for any 1 ≤ i < j ≤ k, Pi and Pj
are disjoint

When k is not fixed (and is part of input) then the problem is known to be NP-
hard even for undirected planar graphs [Lyn75]. However, linear time algorithms
are known when further restricting directed planar graphs to the case:

• when all terminals lie on outer face [SAN90], or

• when all the si-terminals lie on one common face while all the ti-terminals lie
on another common face [RWW96]

If we further ask for paths with minimal total length in the latter problem, then
[VS11] presented a O(kn log n) running time algorithm to achieve the same.

When k is fixed the problem remains NP-hard for directed graphs, even for k = 2
[FHW80], who had also given given a poly time algorithm for the restricted case of
directed acyclic graphs. In the restriced setting of directed planar graphs, [Sch94]
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presented a nO(k) running time algorithm, which was further improved to a fixed
parameter tractable algorithm by [Cyg+13].

Shifting our focus to undirected graphs, the celebrated work of Robertson and
Seymour [RS95] gave a O(n3) algorithm for finding k disjoint paths in an undirected
graph, for any fixed k. [Dat+18] gave a parallel algorithm for class of planar graphs
where all the terminals lie either on one or two faces. All this while, the question
of finding shortest disjoint paths in general undirected graphs, remained open for
many years until recently, Björklund and Husfeldt [BH19] gave a (randomized) poly-
nomial time algorithm for finding the shortest 2-disjoint paths. For general k, this
problem still remains open. Björklund and Husfeldt also gave a parallel algorithm
to count shortest 2-disjoint paths but only for cubic planar graphs [BH18].

1.1.2 Permanent

Given a n× n matrix A = (aij)i,j∈[n], determinant and permanent of A are defined as

det(A) = ∑
σ∈Sn

sgn(σ)
n

∏
i=1

aiσ(i) perm(A) = ∑
σ∈Sn

n

∏
i=1

aiσ(i)

The problem of computing the determinant of a matrix has been a very well stud-
ied problem in the past, and several fast (both sequential and parallel) algorithms are
known. On the contrary, the problem of computing permanent, an algebraic ana-
logue of determinant, of an integer matrix was first shown to be NP-hard by Valiant
[Val79], where he also presented a O(n4k−3) running time algorithm to compute per-
manent modulo 2k. It was also shown that computing permanent modulo any odd
prime still remains hard. Zanko [ZAN91] gave a proof for hardness of permanent
under many-one reductions strengthening the result from the weaker Turing reduc-
tions used by Valiant.

Valiant’s algorithm for permanent mod 2k uses Gaussian elimination which is
known to be highly sequential and so it is desirable to have a parallel algorithm.
This was resolved by Braverman, Kulkarni and Roy [BKR09] who presented a
⊕SPACE(k2 log n) ⊆ NC2 algorithm.

Moreover, NC algorithms for computing determinant of matrices over arbitrary
commutative rings are also known, e.g. [MV97]. We would like to ask a similar
question for the permanent. One natural extension would be to consider the ring of
polynomials with integer coefficients. Björklund and Husfeldt [BH19] gave a d3nO(k)

time algorithm to compute permanent modulo 2k of matrices over integer polyno-
mials where the entries are of degree atmost d and their algorithm uses Gaussian
elimination.

1.1.3 The Bridge

The permanent of a matrix can be regarded as the weighted sum of cycle covers
of a directed graph. This gives a combinatorial interpretation to a seemingly pure
algebraic quantity. Let us formalize this notion now.

Let G be a weighted directed graph (not necessarily loopless) with the associated
weight function w. Our first definition is about cycle covers in a graph. As the name
suggests, a cycle cover is a collection of cycles in the given graph such that every
vertex appears in some cycle. Formally,

Definition 1.1.1. We say C ⊆ E(G) is a cycle cover of G if
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• C is a union of vertex-disjoint simple directed cycles in G

• every vertex of G is incident to some edge in C

Note. Loops are allowed as simple cycles in the above definition.

Now we extend the weight function to define the weight of cycle cover C as
follows: w̃(C) = ∏e∈C w(e). Finally, we encode our given graph into a matrix.

Definition 1.1.2. Let V(G) = {v1, . . . , vn} then we say AG = (aij)i,j∈[n] is the (n× n)
adjacency matrix of G if

aij =

{
w(e) if e = (vi, vj) ∈ E(G)

0 otherwise

With this setup we can finally bridge the cycle covers and permanent as follows:

Lemma 1.1.3. Let (G, w) be a weighted directed graph and AG be its adjacency matrix.
Then we have perm(AG) = ∑ w̃(C) where the sum is taken over all cycle covers C of G

Proof. The crucial observation is that every cycle cover C can be identified with a
permutation σ ∈ Sn and in that case, w̃(C) = ∏n

i=1 aiσ(i).
To see this, we write C as the union of vertex-disjoint directed cycles c1∪ c2∪ . . .∪

ck, then σ = ∏i σi where σi is the cyclic permutation corresponding to the directed
cycle ci. That is, given a cycle c′ = (vj1 → vj2 → · · · → vjk), the corresponding
cyclic permutation is σ′ = (j1, j2, . . . , jk) and with slight abuse of notation we have
that w̃(c′) = aj1 j2 aj2 j3 . . . ajk−1 jk .

Furthermore, if σ ∈ Sn is such that it does not correspond to any cycle cover then
we claim that ∏i aiσ(i) = 0. Consider the following subset S ⊆ V(G)×V(G) defined
as S = {(vi, vσ(i)) | i ∈ [n]}. If S ⊆ E(G), then clearly S is a cycle cover with the
corresponding permutation σ, which is a contradiction. Therefore, there exists an i
such that (vi, vσ(i)) 6∈ E(G) =⇒ aiσ(i) = 0.

Hence we get

perm(AG) = ∑
σ∈Sn

n

∏
i=1

aiσ(i) = ∑
C

w̃(C)

Now when restricted to weighted undirected graphs (G, w), we view them as
a directed graph by replacing each undirected edge {u, v} with two directed edges
(u, v) and (v, u) and we assign symmetrical weights to these edges, that is w((u, v)) =
w((v, u)) = w({u, v}). A direct application of this is seen in [BH19]. Their algorithm
requires computing permanent mod 4 of adjacency matrix of pattern graphs, to obtain
shortest 2-disjoint paths.

1.2 Complexity Classes

We define some of the main complexity classes we will be using in our work. To be-
gin with, we have the class NC which encaptures the notion of parallel computation.

Definition 1.2.1. NCi is the class of decision problems solvable in time O(login) on a par-
allel computer with a polynomial number of processors, or the class of decision problems
decidable by uniform boolean circuits with a polynomial number of gates of fan-in 2 and
depth O(login).
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Clearly, NCi ⊆ NCi+1, for all i ≥ 1 and NC ("Nick’s Class") is defined as NC =⋃
NCi

Definition 1.2.2. ⊕L is the class of decision problems solvable by an NL machine such that

• If the answer is ’yes’, then the number of accepting paths is odd.

• If the answer is ’no’, then the number of accepting paths is even.

Remark. Matrix powering over Z2 is complete for ⊕L

Definition 1.2.3. TC0 contains all languages which are decided by Boolean circuits with
constant depth and polynomial size, containing only unbounded fan-in AND gates, OR
gates, NOT gates, and majority gates.

Remark. TC0 contains several important problems, such as integer division.

Lemma 1.2.4. We have the following well-known subset relations

• ⊕L ⊆ NC2

• NL ⊆ NC2

• TC0 ⊆ NC1

1.3 Our Contribution

To compute permanent of a matrix A over integer polynomials, we closely follow
the analysis of [BKR09] but immediately hit an obstacle. They give a reduction from
perm(A) (mod 4) to several computations of perm(.) (mod 2), which crucially uses
the fact that Z2 is a field. More precisely, when mimicking the proof, firstly it is
required to find a non-trivial solution of Av = 0 with the property that atleast one
of the entries of this vector is invertible. This fails1 over Z2[x]. Moreover, their
algorithm also uses the fact that a non-singular matrix admits a LU decomposition
iff all the leading principal minors are non-zero, which is known to hold in general
only for matrices over fields.

Therefore, replacing Z with Z[x] in their analysis doesn’t work as Z2[x] isn’t a
field. Furthermore, any finite field F of characteristic 2 only corresponds to modulo 2
arithmetic. We need a way to extend the field structure so that it supports modulo 2k

arithmetic as well. If F was realized as Z2[x]/(p(x)) where p(x) is irreducible over
Z2 then a possible candidate is the ring Z[x]/(2k, p(x)). Therefore, the appropriate
algebraic structure to consider would be the ring R = Z[x]/(p(x))

Now we see that replacing Z with R solves the above mentioned problems in
the analysis, primarily because of the fact that R (mod 2) is a finite char 2 field. With
a slight bit of modification in the proof, we achieve that: given a matrix A over R,
we can find perm(A) (mod 2k) or in other words if A is a matrix over Z[x], we can
compute perm(A) (mod 2k, p(x)).

We are still not done because our aim was to compute perm(A) (mod 2k) over
Z[x]. To achieve that, we choose p(x) such that its degree is larger than the de-
gree of polynomial perm(A). This requires doing computations over a large field.
Alternatively, we develop a new way of interpolation over R, which allows us to

1Let A =

(
x x + 1
x x + 1

)
then there does not exist any null vector of the form

(
f
1

)
or
(

1
f

)
for any

f ∈ Z2[x]
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choose p(x) such that its degree is of logarithmic order of degree perm(A), but with
a tradeoff of computing several (polynomially many) more permanents. We present
this technique for its novelty. Therefore, we achieve the following

Theorem 1.3.1. Let k ≥ 1 be fixed and A be a n× n matrix of integer polynomials, such
that the degree of each entry is atmost poly(n). We can compute perm(A) (mod 2k) in
⊕L ⊆ NC2

Wahlström [Wah13] addressed the question of finding a cycle passing through
given vertices. We ask if we can also find shortest such cycle. And furthermore, can
we also find shortest 2-disjoint cycles passing through these vertices? We combine
techniques of [Wah13] and [BH19] to answer the above questions, by reducing them
to computing permanents modulo 2 of 2k−1 and modulo 4 of 2k−1 + 2k−2 matrices re-
spectively. These matrices are adjacency matrix of what we refer to as pattern graphs.
Notice that for k = 2 finding shortest 2-disjoint cycles corresponds to finding short-
est 2-disjoint paths (by connecting each pair of terminals with a common vertex),
and in this case our pattern graphs are exactly those presented in [BH19].

Theorem 1.3.2. Let k ≥ 1 be fixed and G be an undirected graph with k marked vertices.
We can find shortest 2-disjoint cycles passing through the marked vertices in ⊕L/poly (and
RNC)

1.4 Organization

In Chapter 1, we first introduce the topic, preliminaries and some notation that we
shall be using throughout this report. Chapter 2 discusses Björklund and Husfeldt’s
algorithm for finding shortest 2 disjoint paths in undirected graphs [BH19]. Building
up on this and Wahlström’s algorithm for finding a cycle passing through given
points [Wah13], we present an algorithm for our theorem 1.3.2, in Chapter 3.

In Chapter 4 we present proof of our main theorem 1.3.1 about computing per-
manent modulo 2k, following which we also discuss the complexity of required com-
putations over the ring R which shows that our algorithm is in ⊕L. We also present
an alternative proof for our main theorem in section 4.2 which uses new techniques.
Chapter 5 discusses how to apply the same techniques to hafnian and hence it gives
an alternate proof of the already known result that counting perfect matchings mod-
ulo 2k is in P.

Finally in the last Chapter 6, we discuss Schrijver’s algorithm of finding dis-
joint paths in planar directed graphs [Sch94], with which we close our discussion in
Chapter 7 with a few ending remarks.
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Chapter 2

Shortest Disjoint Paths

Just as music comes alive in the
performance of it, the same is true of
mathematics. The symbols on the page
have no more to do with mathematics
than the notes on a page of music.
They simply represent the experience.

Keith Devlin

There is geometry in the humming of
the strings, there is music in the
spacing of the spheres

Pythagoras

2.1 Shortest?

Coming back to disjoint paths problem on undirected graphs, we want to add the
constraint that we require our disjoint paths to be shortest.

But first we need to identify the metric in regard to which we are referring to
these paths as shortest. Here is one such metric: paths Pi are such that ∑i |Pi| is
minimum. |Pi| denotes the length of the path if the graph is unweighted otherwise
it is the sum of weights of the edges occuring on Pi.

Another interesting metric to consider would be: paths Pi are such that each Pi is
individually the shortest path from si to ti. Notice this forms a subcase of the above
because we could use Djikstra’s algorithm to compute the individually shortest dis-
tances and then check if the shortest disjoint paths (with regard to first metric) is
equal to the sum of these lengths or not.

Other metrics, interesting in their own right, could also be considered but we
shall work with the first one described above. So let us formally define the problem
SDP(k) as follows:

Input: a weighted undirected graph (G, w) and k pairs of marked ver-
tices {(si, ti) | i ≤ k} on G

Output: paths Pi from si to ti such that for any 1 ≤ i < j ≤ k, Pi and Pj
are disjoint and ∑i w(Pi) is minimal

Here w : E(G)→ R+ is the given weight function on the edges of G and w(Pi) =

∑e∈Pi
w(e)
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2.2 Pre-processing

Given a graph G = (V, E, w) and k pairs of marked vertices {(si, ti)}i≤k, assign
weight xw(e) to the edge e of G and add self loops (weight 1) on all vertices except
{si, ti}i≤k. Since the non-zero terms appearing in the permanent of adjacency matrix
correspond to a cycle cover in G, we add directed edges ei from si to ti and delete all
other outgoing eges from si, for each i. This will force the cycle cover to use these
edges ei and now the good cycle covers will determine the required disjoint paths.
To only obtain the good cycle covers, we shall use pair up the terminals differently,
which we refer to as patterns.

Formally, define a pattern P as an ordered pairing of terminals {si, ti | 1 ≤ i ≤ k}.
Furthermore, we view each undirected edge {u, v} in G as two directed edges (u, v)
and (v, u) with the same weight. For any pattern P, define a pattern graph GP with
the same vertex/edge set as of G but such that if (u, v) ∈ P then all outgoing edges
from u, except edge (u, v), are deleted. We denote by AP the adjacency matrix of GP.

2.3 Shortest 2-Disjoint Paths

Consider the following patterns, as also depicted in Figure 2.1:

• P0 = {(s1, t1), (s2, t2)}

• P1 = {(s1, t1), (t2, s2)}

• P2 = {(s1, s2), (t1, t2)}

P0
s1

t1

s2

t2

P1
s1

t1

s2

t2

P2
s1

t1

s2

t2

FIGURE 2.1: Patterns and Cycle Covers

Then the following combination of permanents

f (x) = perm(AP0) + perm(AP1)− perm(AP2)

gives us the disjoint paths. Ideally, we would like to express f (x) as twice the sum
of all solutions but some problems remain.

First of all, computing permanent is hard, so we still need to do some work.
Notice that since each cycle cover corresponding to any term in f (x) appears in
both graphs corresponding to patterns P0 and P1 with the same weight, so f (x) ≡
0 (mod 2). Now the hope is that f (x) (mod 4) gives us the desired result. But
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observe that if for each solution S there was another solution S′ with the same weight
then again f (x) ≡ 0 (mod 4)

At this point, we recall that our aim was to only find the shortest disjoint paths
and not all disjoint paths. So we only need to look at the exponent of smallest
non-zero term in f (x) (mod 4). Therefore, under the assumption that the shortest
2-disjoint paths were unique, we get that exponent of non-zero coefficient term in
f (x) (mod 4) gives us the weight of shortest 2-disjoint paths!

To verify our above claim, our main observation is that the two cycles corre-
sponding to the solution can only be traversed in one direction because the si, ti
edge is directed. So we check that if there are extraneous cycles in our cycle cover
alongwith the solution then

• If the extraneous cycle is of length atleast 3, then we can traverse this cycle
either in clockwise or counter-clockwise direction, corresponding to two dif-
ferent permutations σ and σ−1 and because such a cycle cover would occur in
two of the pattern graphs, we get that such cycle covers appear with a coeffi-
cient of atleast 4 and hence do not appear in f (x) (mod 4).

• So we only need to consider the extraneous 2-cycles (matchings) which do not
contribute an additional factor of 2 and hence remain in our solution. Notice
that for each matching edge, a weight of xw(e) is added to our cycle cover C.
Therefore, consider the cycle cover C′ which is same as C except each matching
edge is replaced with two self-loops on the vertices incident to matching edges.
This cycle cover corresponds to a solution and weight of C′ is strictly smaller
than the weight of C.

That is, we can express f (x) (mod 4) = 2 ∑S,M xw(S)+w(M) where the sum is taken
over all solutions S for the 2-disjoint paths problem and matchings M on any subset
of vertices not covered by the solution S.

Let S0 be the unique-weight minimum solution, then the smallest non-zero term
in f (x) (mod 4) is 2xw(S0), so we can read off the weight of our required solution
from smallest non-zero term in f (x) (mod 4).

Further notice that we have only obtained the weights of shortest solution. In
the next chapter, we shall see how to recover the paths itself from these weights. We
shall also see how to drop the assumption of unique minimum weight solution by
using isolation lemma.
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Chapter 3

Shortest Disjoint Cycles

Rose smells the same regardless of
what you call it
...but in mathematics, a different name
might suggest some new ideas

BV Rao

Having understood the solution for SDP(2), naturally one would ask if there is
a linear combination of some patterns which would give us SDP(3).

It is not clear that if such a scheme exists and the same techniques can be applied
for SDP(k). But let us again look at SDP(2) from a different perspective. If we fix
the edges (s1, t1) and (s2, t2) then we need to find shortest 2 disjoint cycles passing
through these 2 edges. To generalize this idea, we recall SDP and also introduce our
new SDC problem.

SDP(k): Given a weighted undirected graph with k pairs of marked vertices
{(si, ti) | 1 ≤ i ≤ k}, find the minimum of sum of weight of paths between each pair
si and ti such that all paths are pairwise disjoint.

SDC(l, k): Given a weighted undirected graph with k marked vertices, find the
minimum of sum of weight of l cycles such that they pass through all the marked
vertices and are pairwise disjoint and each cycle is incident to atleast one of the
marked vertices.
Note. We only consider non-trivial cycles that is we don’t consider self-loops or match-
ing in the above SDC problem.

Given an instance of the SDP(2) problem, join the pairs of vertices (s1, t1) and
(s2, t2) with new vertices u1 and u2 respectively, as show in Figure 3.1. Notice that
any two disjoint cycles passing through u1 and u2 give us two disjoint paths between
(s1, t1) and (s2, t2).

s1

t1

u1

s2

t2

u2

1

1

1

1

FIGURE 3.1: Converting an instance of SDP(2) to SDC(2, 2)

Similarly, connecting the k-pairs of vertices via another new vertex and edges
of weight x0 = 1, gives us a reduction from k-disjoint paths to k-disjoint cycles via
k-vertices. Since this reduction preserves the weight of the path/cycle, it is indeed a
reduction from SDP(k) to SDC(k, k).
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To apply the techniques of [BH19] to disjoint cycles problem, we instead consider
the following variant SDCE(l, k): Given a weighted undirected graph with k marked
edges, find the minimum of sum of weight of l cycles such that they pass through all
the marked edges and are pairwise disjoint.

It can be easily seen that there is a logspace reduction from SDC(l, k) to
SDCE(l, k) as follows: Let (G, {v1, v2, . . . , vk}) be an instance of SDC(l, k). Assume
without loss of generality that the marked vertices form an independent set, or
otherwise split the edge into two by introducing a new vertex in the middle. For
each i, choose a vertex ui, a neighbour of vi, such that i 6= j =⇒ ui 6= uj, we
solve (G, {e1, e2, . . . ek}) an instance of SDCE(l, k) where ei = {ui, vi} and output the
smallest solution amongst all the instances of SDCE thus created. Since for each
i, deg(vi) < n, number of instances of SDCE created are bounded by O(nk) all of
which can be solved in parallel as k is fixed.

3.1 Pre-processing

The pre-processing step is similar to as in the previous case of 2-disjoint paths. For
the sake of clarity we mention it once again.

Given a graph G = (V, E, w) and k marked edges {ei = {si, ti}}i≤k, assign weight
xw(e) to the edge e of G and add self loops (weight 1) on all vertices except {si, ti}i≤k.
Observe that all the non-zero terms appearing in the permanent of adjacency matrix
correspond to a cycle cover in G. To force these k-edges in our cycle cover, we direct
these edges in a certain way which we shall call as a pattern.

Formally, define a pattern P as an ordered pairing of terminals of given edges
{si, ti | 1 ≤ i ≤ k}. Furthermore, we view each undirected edge {u, v} in G as two
directed edges (u, v) and (v, u) with the same weight. For any pattern P, define a
pattern graph GP with the same vertex/edge set as of G but such that if (u, v) ∈ P
then all outgoing edges from u, except edge (u, v), are deleted. We denote by AP the
adjacency matrix of GP.

Now we shall show how to solve the SDCE(1, k) problem for any k ≥ 1. This
algorithm was already reminiscent in the work of Magnus Wahlström on finding a
cycle passing through given points [Wah13]. Since our technique is also almost same
as that of him, we attribute our solution to this particular problem to him. Next, we
also present how to solve the SDCE(2, k) problem for any k ≥ 2. As far as we know,
no algorithm (better than brute force) was known apriori to our work for k ≥ 3.

3.2 Shortest Cycle

Magnus Wahlström presented a FPT algorithm to find a cycle passing through given
vertices on a graph [Wah13], by calculating determinant of Tutte matrix of 2k pattern
graphs, over a field of characteristic two. With slight modifications to his techniques,
we can in fact achieve shortest cycle. And therefore, we shall discuss the modified
technique to achieve the stronger result.

Let {ei = {si, ti}}i≤k be given k-edges. For each binary sequence b =
(b1, b2, . . . , bk−1) of length k− 1, consider the following pattern Pb:

• (s1, t1) ∈ Pb

• ∀2 ≤ i ≤ k, if bi−1 = 0 then (si, ti) ∈ Pb else (ti, si) ∈ Pb
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So {Pb}b is the collection of patterns with the orientation of e1 fixed and all pos-
sible orientations of the other edges {ei}i≥2, as dictated by each binary sequence.

Claim 3.2.1. Under the assumption that the shortest cycle is unique, the smallest
exponent with non-zero coefficient in f1(x) (mod 2) is the weight of unique shortest
cycle passing through the given edges, where

f1(x) = ∑
b

perm(APb)

Proof. Let C be any cycle cover which consists of atleast 2 non-trivial cycles. Con-
sider the cycle in C which doesn’t contain edge e1 - there are two ways of orienting
this cycle, namely clockwise and counter-clockwise. So this cycle cover contributes
to f1(x) for atleast two such b-sequences and so it vanishes modulo f1 (mod 2).

Thus the only terms that survive in f1 (mod 2) are the cycle covers which consist
of one cycle passing through all the given edges and self-loops on the remaining
vertices, and furthermore number of cycles of this weight must be odd.

Since the shortest weight cycle was unique by our assumption, we get the desired
result.

3.2.1 Ensuring uniqueness via randomness

To drop the assumption that a unique minimum weight solution exists, we instead
assign modified weights 2nmw(e) + w′(e) where n = |V(G)|, m = |E(G)|, w(e) is
the given weight of edge e and w′(e) ∈ {0, 2, . . . , 2m− 1} is choosen independently
and uniformly at random for each edge e. Then isolation lemma [MVV87] tells us
that, with probability 1

2 , the minimum weight cycle is unique. Hence if the term xj

survives as the smallest exponent with non-zero coefficient term in f1(x) (mod 2)
then we get the weight of shortest cycle as bj/2nmc.

3.3 Shortest 2-Disjoint Cycles

We shall first prove the following stronger result:

Theorem 3.3.1. Given a set of k-edges {ei}i≤k, we can find weight of the shortest 2-disjoint
cycles passing through these edges such that e1 and e2 appear in different cycles in ⊕L/poly
(and RNC)

First notice that with a mere re-phrasing of the above theorem, we get the fol-
lowing corollary

Corollary 3.3.2. Given 2 pairs of terminals s1, t1 and s2, t2 and a set of k edges, we can find
weight of the shortest 2-disjoint paths from si to ti, for i ∈ {1, 2} such that the paths also
pass through the given k edges in ⊕L/poly (and RNC)

Let {Pb}b be the patterns as defined above. Furthermore, for each binary se-
quence c = (c1, c2, . . . , ck−2) of length k− 2, define pattern Qc as

• (s1, s2) ∈ Qc

• (t1, t2) ∈ Qc

• ∀3 ≤ i ≤ k, if ci−2 = 0 then (si, ti) ∈ Qc else (ti, si) ∈ Qc
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With a combination of these patterns, we can get our desired cycle covers. We
claim that the non-zero terms appearing in

f2(x) = ∑
b

perm(APb)−∑
c

perm(AQc)

correspond to cycle covers in GPb such that edges e1 and e2 appear in different cycles.
To prove our claim, we need to argue that the cycle covers of GPb in which e1 and

e2 appear in the same cycle are exactly the cycle covers of GQc Let

CQ =
⊔
c

cycle covers of GQc

CP =
⊔
b

cycle covers of GPb such that edges e1 and e2 appear in the same cycle

where each cycle cover is counted with repetitions in CP and CQ.
Claim 3.3.3. There is a one-one correspondence between CP and CQ.

Proof. We define the mapping ϕ : CP → CQ as follows. Given a cycle cover in CP,
remove the edges e1 and e2 and add edges (s1, s2) and (t1, t2), refer to Figure 3.2
below.

To show that this a well-defined mapping and indeed a bijection, we partition CP
into type 1 and type 2 cycle covers, depending upon the orientation of the edge e2.
Consider the cycle in which e1 and e2 appear together. Then if the edge e2 is oriented
as (s2, t2) then we call it type 1 cycle cover otherwise we call it a type 2 cycle cover.

Similarly, we partition CQ into type 1 and type 2 cycle covers. If the edges {s1, s2}
and {t1, t2} appear in the same cycle then we call it a type 1 cycle cover otherwise
we call it a type 2 cycle cover.

Fix a type 1 cycle cover of CP. Then it contains a cycle of the form

(s1
e1−→ t1 → P1 → s2

e2−→ t2 → P2 → s1)

Applying ϕ to this cycle cover we get the cycle

(s1
e1−→ s2 → Preverse

1 → t1
e2−→ t2 → Preverse

2 → s1)

and the other cycles remain intact. This constitutes a type 1 cycle cover in CQ
Similarly, consider a type 2 cycle cover of CP with the cycle

(s1
e1−→ t1 → P1 → t2

e2−→ s2 → P2 → s1)

Applying ϕ to this cycle cover we get two cycles

(s1
e1−→ s2 → Preverse

2 → s1)

(t1
e2−→ t2 → Preverse

1 → t1)

and the other cycles remain intact. This constitutes a type 2 cycle cover in CQ.
Therefore, ϕ is a well-defined mapping and furthermore type i cycle covers of

CP are mapped to type i cycle covers of CQ, i ∈ {1, 2}. Now consider ψ : CQ → CP
defined as follows. Given a cycle cover in CQ, remove the edges (s1, s2) and (t1, t2)
in the cycle and insert edges e1 and e2 with the orientation decided by the type. By
an similar argument as above, we get that ψ is well-defined and clearly ψ is inverse
of ϕ.
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s1

t1

s2

t2

s1

t1

s2

t2

Type 1 cycle cover in CP Type 1 cycle cover in CQ

s1

t1

s2

t2

s1

t1

s2

t2

Type 2 cycle cover in CP Type 2 cycle cover in CQ

FIGURE 3.2: Bijection between CP and CQ

Now suppose C is a cycle cover of G such that edges e1 and e2 appear in different
cycles. We have two cases:

Case 1: number of non-trivial cycles in C is more than 2. Consider any two
cycles in C such that e1 is not incident on them. We can orient these two cycles in
both clockwise and anti-clockwise direction and so we get that C is a cycle cover
in GPb for atleast 4 b-sequences. Hence, the term corresponding to C cancels out in
f2 (mod 4)

Case 2: number of non-trivial cycles is exactly two. Then C is a cycle cover in GPb

for exactly two b-sequences , that is the the cycle passing through e2 has two possible
orientations whereas cycle passing through e1 has a fixed orientation (as orientation
of e1 remains fixed in all GPb ). Hence, the term corresponding to C appears with a
coefficient of two in f2 (mod 4). Therefore, the non-zero terms in f2 (mod 4) cor-
respond to only the cycle covers in which edges e1 and e2 appear in different cycles
and number of non-trivial cycles is exactly 2. Assuming a unique shortest 2-disjoint
cycle exists, it’s weight can be obtained from the smallest exponent with a non-zero
coefficient in f2 (mod 4). Finally, to drop this assumption, we again assign random
weights as done previously to ensure that the minimum weight solution is unique,
with high probability. In the next section we discuss a common weighting scheme
to obtain a ⊕L/poly algorithm. This shall complete the proof of Theorem 3.3.1.

Corollary 3.3.4. (Theorem 1.3.2 restated) Given a set of k-edges {ei}i≤k, we can find weight
of the shortest 2 cycles passing through these edges in ⊕L/poly (and RNC)

Proof. For each pair of edges ei and ej, we can find weight of the shortest cycles
separating them using the above algorithm. Hence taking the minimum over all
pairs, we get our desired result.

3.4 Common Weighting Scheme

We have only exhibited a randomized ⊕L algorithm (that is RNC algorithm). To
further show that a common poly weight scheme exists for all graphs of size n, we
use the well-known result of [RA00] as follows: Call a weighted undirected graph
(G, w) (w is the given weight function on edges) min-k-unique, if for any k marked
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edges on G, there exists unique shortest l disjoint cycles passing through these k
edges. Our goal is to show for each n > 0 there exists a set of n2 weight functions
w1, . . . , wn2 such that given a graph G on n vertices, (G, wi) is min-k-unique for some
i ∈ [1, n2].

Given a graph G on n vertices and k marked edges e1, . . . , ek, let F (e1, . . . , ek)
be the family of all l disjoint cycles passing through e1, . . . , ek. Using isolation
lemma [MVV87], if w is a random weight function, that is each edge is assigned
a weight from [1, 4n2k+2] independently and uniformly at random, then probabil-
ity that F (e1, . . . , ek) has a unique minimum weight element is atleast 1− 1/4n2k.
Therefore, probability that (G, w) is not min-k-unique for a random weight function
w is atmost

Pr[∃e1, . . . , ek : F (e1, . . . , ek) doesn’t have a minimum weight element]

≤ ∑
e1,...,ek

1
4n2k ≤ 1/4

Now we claim that there exists a set of n2 weight functions W = (w1, . . . , wn2)
such that for any given graph G on n vertices, (G, wi) is min-k-unique for some 1 ≤
i ≤ n2. We say W is bad if it doesn’t meet this criteria and in particular W is bad for
G, if none of (G, wi) is min-k-unique. For a randomly choosen W, that is each wi is
chosen independently and uniformly at random, then

Pr[W is bad for G] ≤ Pr[∀i : (G, wi) is not min-k-unique] ≤
(

1
4

)n2

=⇒ Pr[W is bad] ≤ Pr[∃G : W is bad for G] ≤ 2n2
(

1
4

)n2

< 1

Hence there exists some W = (w1, . . . , wn2) which satisfies the above property
and so W is the required poly advice.

To complete the argument for SDCE(1, k), SDCE(2, k) ∈ ⊕L/poly, we obtain the
weight of shortest cycle(s), by replacing replace w′, the random weight function,
with each of the weight functions wi and output the minimum amongst them.

3.5 Constructing Cycles

We remark that under the assumption that the shortest cycle(s) are unique, we can
recover these cycles C just from the knowledge of their weight w(C). This follows
the standard strategy of solving search via isolation as in [MVV87]. For each edge
e 6∈ {e1, . . . , ek}, delete the edge e and call the resulting graph Ge. Running our
algorithm on (Ge, {e1, . . . , ek}), if the shortest cycle(s) weight is more than w(C), then
discard e otherwise add e to the set C, which gives us the required cycle(s).
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Chapter 4

Parallel Polynomial Permanent

You do not study mathematics because
it helps you build a bridge. You study
mathematics because it is the poetry of
the universe. Its beauty transcends
mere things.

Johnathan David Farley

Finally, we embark on our journey of inspecting the bridge from combinatorics
to algebra. Let’s take a deep breathe and begin.

4.1 Permanent over R Mod 2k

First of all, we fix some general notation. Let p(x) be an irreducible polynomial over
Z2[x] such that deg(p(x)) is atmost poly(n). Denote by F the finite field of char 2,
which is realized as Z2[x]/(p(x)) and by

Rk = Z[x]/(2k, p(x))

In particular R1
∼= F. Now as already discussed, we essentially replace Z by R in

the algorithm of [BKR09]. We are ready to state the main theorem.

Theorem 4.1.1. Let k ≥ 1 be fixed and A ∈ Rn×n. We can compute perm(A) (mod 2k)
in ⊕L

Proof is by induction on k. We start with the base case k = 1. Note that
perm(A) ≡ det(A) (mod 2). Using corollary 4.1.8 we can find perm(A) (mod 2)
in ⊕L. Now suppose k > 1, we shall reduce it to computing several such deter-
minants modulo 2, all of which can be computed in parallel. In doing so, we first
illustrate an algorithm which is sequential and then we shall see how to parallelize
it.

4.1.1 Sequential algorithm for computing permanent modulo 2k

We present the algorithm from [BKR09] for computing permanent but translated
within our framework. Let A = (aij)i,j∈[n] ∈ Rn×n be such that det(A) ≡ 0 (mod 2).
Therefore we can find a non-zero vector v ∈ Fn such that ATv = 0 over F. Assume
without loss of generality v1 = 1.

Let ri denote the ith row of A and define A′ to be the matrix where the 1st row in
matrix A is replaced with ∑i viri. Now if we expand the permanent along the first
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row then we get

perm(A′) =
n

∑
i=1

viperm(A[1← i]) = perm(A) +
n

∑
i=2

viperm(A[1← i]) (4.1)

where A[i ← j] is the matrix A but with ith row replaced with the jth row. For
I, J ⊆ [n] denote by A[ Î, Ĵ] the matrix obtained from A by deleting rows indexed by
I and columns indexed by J. With this equation, modulo 2k computation reduces to
modulo 2k−1 computations of the minors as follows:

perm(A′) =
n

∑
j=1

(
n

∑
i=1

viaij

)
perm(A[{̂1}, {̂j}])

Since ATv = 0 (mod 2), we can write ∑i viaij = 2bj (mod 2k) for some bj ∈ Rk,
therefore, we can re-write the above permanents as:

perm(A′) (mod 2k) = 2

(
n

∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)

)

Similarly, expanding perm(A[1 ← i]) along the 1st and ith rows, we get the reduc-
tion:

perm(A[1← i]) = ∑
j 6=k

aijaikperm(A[{̂1, i}, {̂j, k}])

perm(A[1← i]) (mod 2k) = 2

(
∑
j<k

aijaikperm(A[{̂1, i}, {̂j, k}]) (mod 2k−1)

)

Substituting these equations back in 4.1, we get

perm(A) (mod 2k) = 2

(
n

∑
j=1

bjperm(A[{̂1}, {̂j}]) (mod 2k−1)

)

− 2
n

∑
i=2

vi

 n

∑
j,k=1
j<k

aijaikperm(A[{̂1, i}, {̂j, k}]) (mod 2k−1)


Since addition and multiplication over Rk is in ⊕L (see 4.1.13) we get that

perm(A) (mod 2k) ⊕L-reduces to perm(.) (mod 2k−1). Hence by induction, we can
compute perm(A) (mod 2k) in ⊕L, provided that perm(A) ≡ 0 (mod 2).

Let us see how to drop this assumption. We expand the permanent of A along
the ith row, then

perm(A) = ∑
j

aijperm(A[{̂i}, {̂j}])

If perm(A) 6≡ 0 (mod 2), then ∃i, j such that perm(A[{̂i}, {̂j}]) 6≡ 0 (mod 2). Con-
sider the matrix C where all entries are same as A except the (i, j)th entry which
is replaced with aij + y. Then, we get perm(C) = perm(A) + yperm(A[{̂i}, {̂j}]).
Notice that perm(A) + yperm(A[{̂i}, {̂j}]) ≡ 0 (mod 2) is a linear equation in y
over the field F and so there exists a unique y which satisfies this equation, which
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is y0 = perm(A)perm(A[{̂i}, {̂j}])−1. Setting y = y0 we get perm(C) ≡ 0 (mod 2),
so we can compute perm(C) (mod 2k) and then compute perm(A[{̂i}, {̂j}]) recur-
sively as A[{̂i}, {̂j}] is a smaller (n − 1) × (n − 1) size matrix. Hence we obtain
perm(A) = perm(C)− y0perm(A[{̂i}, {̂j}]) (mod 2k). This yields a sequential al-
gorithm for computing permanent modulo 2k over R.

4.1.2 Parallel algorithm for computing permanent modulo 2k

The bottleneck was finding i, j such that A[{̂i}, {̂j}] is non-singular over F. We fix
this by again appealing to the fact that we are working over a field, and modifying
A such that all leading principal minors are non-zero. This modification essentially
derives from the following fact.

Theorem 4.1.2. ([OJ05] Corollary 1) Let A be an invertible matrix over a field F, then all
leading principal minors are non-zero iff A admits an LU decomposition

Every invertible matrix admits a PLU factorization [OJ05] so let A = PLU. De-
note by Q = P−1, then QA = LU. Since Q is also a permutation matrix, we get that
perm(QA) = perm(A) (because permanent is invariant under row swaps). There-
fore, it suffices to give a ⊕L algorithm to find Q so that we can replace A by QA
which is an invertible matrix such that all leading principal minors are non-zero.
Thus computing perm(A) (mod 2k) reduces to the problem of computing (in paral-
lel) permanent modulo 2k of n− 1 matrices with perm ≡ 0 (mod 2). This gives a ⊕L
algorithm to compute permanent modulo 2k over R.

To find Q, we closely follow [Ebe91]. For each 1 ≤ i ≤ n, let Ai be the matrix
formed from A by only taking the first i columns. Let Aj

i matrix obtained from Ai by
only taking the first j rows. We construct a set Si ⊆ [n] inductively as follows:

• Base case: l ∈ Si if rank(Al
i) = 1 and rank(Ak

i ) = 0 for all k < l

• Include j ∈ Si iff rank(Aj
i) = 1 + rank(Aj−1

i )

Since rank(Ai) = i, we get |Si| = i. Furthermore note that Si ⊂ Si+1. So let
S1 = {s1} and for each i ≥ 2, denote by si ∈ Si \ Si−1. Consider the following
permutation Q = (n, sn) . . . (2, s2)(1, s1). Thus Q is our desired permutation, such
that QA has all leading principal minors non-zero.

As a corollary, we immediately get our desired result.

Corollary 4.1.3. (Theorem 1.3.1 restated) Given a n× n matrix A = (aij)i,j∈[n] over Z[x]
with deg(aij) atmost poly(n), we can compute perm(A) (mod 2k) in ⊕L for any fixed
k ≥ 1

Proof. Let N = n max{deg(aij)}+ 1 and choose l = dlog3(N/2)e. Consider p(x) =
x2.3l

+ x3l
+ 1 which is irreducible over Z2[x] (see [Lin13] Theorem 1.1.28)

Since deg(p(x)) ≥ N > deg(perm(A)), using this p(x) in above theorem, we
get perm(A) (mod 2k) for any fixed k.

4.1.3 Complexity Analysis

We discuss the complexity results for arithmetic operations over the ring Rk and
matrix operations over the field F, which were required in our above algorithm. To
begin with, we state a well-known fact about integer polynomials matrix multipli-
cation modulo 2. This shall form our basis for showing computations over F in ⊕L.
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Lemma 4.1.4. (Folklore, [Dam90]) Let A1, A2, . . . An ∈ Z2[x]n×n then the product
A1 A2 . . . An can be computed in ⊕L

To obtain an analogous result over F we first perform multiplication over Z2[x]
and then divide all entries by p(x), using the following polynomial division, as
demonstrated by Hesse, Allender and Barrington in [HAB02], to get that iterated
matrix product over F is in ⊕L

Lemma 4.1.5. ([HAB02] Corollary 6.5) Given g(x), p(x) ∈ Z[x] of degree atmost poly(n),
we can compute g(x) (mod p(x)) in DLOGTIME− uniform TC0 ⊆ L

In particular, it follows that given an irreducible polynomial p(x) (over Z2[x]),
then for any g(x) ∈ Z[x] of degree atmost poly(n) we can find g(x) (mod 2k, p(x))
in ⊕L, for any fixed k ≥ 1.

Corollary 4.1.6. Let A1, A2, . . . An ∈ Fn×n such that the degree of each entry is atmost
poly(n) then the product A1A2 . . . An can be computed in ⊕L

Our algorithm also requires computing inverse of non-zero elements. To com-
pute inverse over F∗ we adopt the techniques from Fich and Tompa [Ebe84; FT88].
Since F = Z2[x]/(p(x)) with N = deg(p(x)) which is atmost poly(n), then given
a ∈ F∗, we observe that a−1 = aq−2 where q = 2N = |F|.

We interpret this equation over Z2[x], that is we need to compute
a(x)q−2 (mod p(x)) over Z2[x]. First we show how to compute a(x)2 (mod p(x)).
Construct the N × N matrix Q whose ith row (Qi,0, Qi,1, . . . , Qi,N−1) is defined as:

N−1

∑
j=0

Qi,jxj = x2i (mod p(x))

for each 0 ≤ i ≤ N − 1. Matrix Q can be computed in ⊕L using the divison
lemma 4.1.5. Then the elements of the row vector (a0, a1, . . . , aN−1)Q are the co-
efficients of a(x)2 (mod p(x)) as explained in section 3 of [FT88]. Furthermore, the
coefficients of a(x)2k

(mod p(x)) are given by (a0, a1, . . . , aN−1)Qk. From lemma 4.1.4
we get that a(x)2k

(mod p(x)) can be computed in⊕L, for any k bounded by poly(n).
Therefore. writing q− 2 = (c0, c1, . . . , cN−1) in binary,

a(x)q−2 (mod p(x)) =
N−1

∏
i=0

a(x)ci2i
(mod p(x))

can be computed in ⊕L, which gives us a−1.
Mahajan and Vinay [MV97] describe a way to reduce the computation of a de-

terminant over a commutative ring to a semi-unbounded logarithmic depth circuit
with addition and multiplication gates over the ring. In fact, the following is an easy
consequence of their result:

Lemma 4.1.7. (Mahajan-Vinay [MV97]) Let A ∈ Rn×n be a matrix over a commutative
ring. Then there exist M ∈ R(2n2)×(2n2) and two vectors a, b ∈ R2n2

such that det(A) =
aT Mnb. Moreover, each entry of the matrix Mij and the vectors a, b is one of the entries
Ai′,j′ or a constant from {0, 1} and the mapping φ where for every (i, j) ∈ [2n2] × [2n2],
φ(i, j) ∈ A[n]×[n] ∪ {0, 1} is computable in Logspace.

Proof. (Sketch) In [MV97], given a matrix A they construct a graph HA whose vertex
set is {s, t+, t−} ∪Q where Q = {[p, h, u, i] : p ∈ {0, 1}, h, u ∈ [n], i ∈ {0, . . . , n− 1}}.
Moreover, the edges are one of the following forms (s, q), (q, q′), (q, t+) and (q, t−)
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where q, q′ ∈ Q and have weights w(q, q′) that each depend on a single entry of A or
are one of the constants 0, 1. Moreover the mapping is very simple to describe. Let
us focus on the induced subgraph HA[Q]. Notice that |Q| = 2n3 and each “layer”
of HA[Q] is identical. In other words, ei = 〈[p, h, u, i], [p′, h′, u′, i + 1]〉 is an edge in
HA[Q] iff ej = 〈[p, h, u, j], [p′, h′, u′, j + 1]〉 is an edge in HA[Q] and both have the
same weights for every i, j ∈ {0, . . . , n − 1}. Thus define the matrix M by putting
M[p,h,u],[p′,h′,u′] as the weight of any of the edges ei.

Finally to define a, b: let a[n mod 2,1,1] = 1 and aq = 0 for all other q. b[1,h,u] = auh
and b[0,h,u] = −auh. The correctness of our Lemma then follows from the proof of
Lemma 2 of [MV97].

Using above lemma 4.1.7, we reduce determinant over F to matrix powering
over F, which can be computed in ⊕L using corollary 4.1.6. Hence we get

Corollary 4.1.8. Let A ∈ Fn×n then det(A) can be computed in ⊕L

Now we demonstrate two results: computing rank and a null vector a matrix
over F in ⊕L. We use Mulmuley’s algorithm [Mul87], which requires finding de-
terminant over the ring F[y, t], which reduces to matrix powering over F[y, t] by
the above result. We shall further reduce this to matrix powering over F as fol-
lows: Let R be an arbitrary commutative ring. We associate with each polynomial
f (x) = ∑d−1

i=0 fixi ∈ R[x] a d× d lower-triangular matrix

P( f ) =


f0
f1 f0
f2 f1 f0
...

...
...

. . .
fd−1 fd−2 fd−3 . . . f0

 ∈ Rd×d

Suppose we have two polynomials f (x) and g(x) of degree d1 and d2 respec-
tively. We can interpret them as degree d1 + d2 polynomials (with higher exponent
coefficients as 0). Then we have that P( f + g) = P( f )+ P(g) and P( f g) = P( f )P(g).

Theorem 4.1.9. Let R be any commutative ring and A1, A2, . . . An be n× n matrices over
R[x] such that the degree of each entry is atmost poly(n). Denote by A = ∏ Al . There
exists poly(n)× poly(n) matrices B1, B2, . . . Bn over R such that the coefficient of xk in Aij
is equal to Bψ(i,j,k) where B = ∏ Bl and ψ is logspace computable.

In other words, iterated matrix multiplication over R[x] is logspace reducible to iterated
matrix multiplication over R.

Proof. Let N = n maxi,j,k∈[n]{deg((Ai)jk)} where (Ai)jk denotes the (j, k)th entry of
Ai. By our assumption, N is atmost poly(n). Now for each 1 ≤ i ≤ n, compute
the matrix Bi ∈ RnN×nN obtained from Ai by replacing each polynomial (Ai)jk with
the N × N matrix P((Ai)jk). These matrices Bi can be computed in log space. Now
the coefficient of xk in Aij can be read from the entry Bψ(i,j,k) where ψ(i, j, k) = ((i−
1)N + k + 1, (j− 1)N + 1) is logspace computable. The correctness follows from our
observation P( f g) = P( f )P(g).

Remark. This gives us an alternate proof of the fact that iterated matrix multiplication
over Z2[x] is in ⊕L, as it follows immediately from the definition of ⊕L that iterated
matrix multiplication over Z2 is in ⊕L.

Lemma 4.1.10. [Mul87] Let A ∈ Fm×n then rank(A) can be computed in ⊕L
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Proof. We can assume that A is a square (n× n) symmetric matrix because otherwise

replace A with
(

0 A
AT 0

)
which has rank twice that of A. Let Y be a n× n diagonal

matrix with the (i, i)th entry as yi−1. And let m be the smallest number such that tm

has a non-zero coefficient in the characteristic polynomial of YA, that is det(tI−YA).
Then rank of A = n−m.

Suffices to show that det(tI − YA) can be computed in ⊕L. Notice that (tI −
YA) ∈ F[y, t]n×n and so det(tI − YA) is logspace reducible to matrix powering over
F[y, t]. Using the canonical isomorphism F[y, t] ∼= F[y][t], repeated application of
theorem 4.1.9 logspace reduces it to matrix powering over F.

Observation 4.1.11. Let A ∈ Fn×n be an invertible matrix then A−1 can be computed in
⊕L

This follows from the fact that computing A−1 involves computing the determi-
nant of A and n2 cofactors, that is determinants of n2 matrices of size (n− 1)× (n−
1). Notice that this also requires inverting the determinant, an element of F∗, which
has been explained above.

Corollary 4.1.12. Let A ∈ Fn×n then finding a non-trivial null vector (if it exists) is in⊕L

Proof. Let rank(A) = m, then permute the rows and columns of A so that we can

express A =

(
B C
D E

)
such that B is an invertible m × m matrix. Let

(
x
y

)
be a

column vector where x ∈ Fm and y ∈ Fn−m, such that

A
(

x
y

)
= 0 =⇒

(
B C
D E

)(
x
y

)
= 0

This reduces to the set of equations: Bx + Cy = 0 and Dx + Ey = 0. But the later
is a redundant set of equations because

(
D E

)
can be written in terms of

(
B C

)
.

More precisely, there exists a matrix V ∈ Fn−m×m such that D = VB and E = VC
and so Dx + Ey = VBx + VCy = V(Bx + Cy) = 0. Therefore setting x = 1 and
y = −B−1C1, gives us the desired null vector. So it suffices to give a ⊕L algorithm
to transform A to the form as specified above, which follows from [Ebe91]. Let Ai be
the matrix formed from first i rows of A. We construct a set S ⊆ [n] as follows:

• Base case: i ∈ S if rank(Ai) = 1 and rank(Aj) = 0 for all j < i

• Include k ∈ S iff rank(Ak) = 1 + rank(Ak−1)

It follows that |S| = m and let S = {i1 < i2 < · · · < im} and Pr be the permutation
matrix described by (m, im) . . . (2, i2)(1, i1). Then Pr A is the required matrix having
first m rows as linearly independent. Next, consider the matrix A′ = (Pr A)T and
apply the above algorithm to get a permutation matrix Pc such that first m rows
of Pc A′ are linearly independent. Then Pr APT

c is the required matrix such that the
leading principal m−minor is non-singular.

Finally, to conclude our result, we discuss arithmetic over Rk

Lemma 4.1.13. Let k ≥ 1 be fixed then the following operations can be done in ⊕L

• Multiplication : Given a, b ∈ Rk compute ab

• Iterated Addition: Given c1, c2, . . . , cn ∈ Rk compute ∑i ci
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Proof. We use the fact that the arithmetic operations mentioned in the statement of
lemma, but over Z2k are in ⊕L (see for e.g. [HAB02])

• Let a(x), b(x) ∈ Rk and write a(x) = ∑D
i=0 aixi and b(x) = ∑D′

i=0 bixi, then
a(x)b(x) = ∑D+D′

i=0

(
∑i

j=0 ajbi−j

)
xi. Finally, using lemma 4.1.5, divide a(x)b(x)

by p(x) to obtain ab ∈ Rk

• Similarly, let c1(x), c2(x), . . . , cn(x) ∈ Rk and write ci(x) = ∑Di
j=0 cijxj for each

i ∈ [n], then ∑n
i=1 ci(x) = ∑max{Di}

j=0

(
∑n

i=1 cij
)

xj where we assume cij = 0 if
j > Di

4.1.4 Examples

Let A =

 1 x + 1 x + 2
x x2 x2 + x
x2 3 x2 + 3

, p(x) = x6 + x3 + 1 be the irreducible polynomial

and we want to evaluate perm(A) (mod 4) over the ring R = Z[x]/(p(x)). First of
all, a direct computation gives us perm(A) = 2x5 + 6x4 + 2x3 + 12x2 + 12x. Now
we demonstrate the steps taken by our algorithm.

Step 1: We start by evaluating perm(A) (mod 2). We directly notice here that
last column is the sum of first two columns and so det(A) = 0 =⇒ perm(A) ≡
0 (mod 2)

Step 2: Since det(A) ≡ 0 (mod 2), we solve the equation ATv = 0 over F by our

method as follows:

 1 x x2

x + 1 x2 1
x x2 + x x2 + 1

v1
v2
v3

 = 0

Since rank of the principal 2× 2 submatrix is already 2, we set v3 = 1 and solve

the equation:
(

v1
v2

)
= −

(
1 x

x + 1 x2

)−1 (x2

1

)
1 to get v1 = x3 + 1 and v2 = x5 + x.

Step 3: For each j = 1, 2, 3, we find bj such that ∑i viaij = 2bj (mod 4)

j = 1 : (x3 + 1) + x(x5 + x) + x2 = 2x2

j = 2 : (x + 1)(x3 + 1) + x2(x5 + x) + 3 = 2x3

j = 3 : (x + 2)(x3 + 1) + (x2 + x)(x5 + x) + x2 + 3 = 2x3 + 2x2

Step 4: We have the formula

perm(A) (mod 4) = 2

(
3

∑
j=1

bjperm(A[{̂3}, {̂j}]) (mod 2)

)

− 2
2

∑
i=1

vi

 3

∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)
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Step 4.1:

perm(A[{̂3}, {̂1}]) = perm
(

x + 1 x + 2
x2 x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂2}]) = perm
(

1 x + 2
x x2 + x

)
= x (mod 2)

perm(A[{̂3}, {̂3}]) = perm
(

1 x + 1
x x2

)
= x (mod 2)

=⇒
3

∑
j=1

bjperm(A[{̂3}, {̂j}]) = ((x3) + (x4) + (x4 + x3)) = 0 (mod 2)

Step 4.2:

3

∑
j,k=1
j<k

a1ja1kperm(A[{̂1, 3}, {̂j, k}])

= (x + 1)(x2 + x) + (x + 2)x2 + (x + 1)(x + 2)x = x3 + x2 + x (mod 2)
3

∑
j,k=1
j<k

a2ja2kperm(A[{̂2, 3}, {̂j, k}])

= x3(x + 2) + x(x2 + x)(x + 1) + x2(x2 + x) = x4 + x3 + x2 (mod 2)

2

∑
i=1

vi

 3

∑
j,k=1
j<k

aijaikperm(A[{̂3, i}, {̂j, k}]) (mod 2)

 = x5 + x4 + x3 (mod 4)

Therefore, perm(A) (mod 4) = 2x5 + 2x4 + 2x3 which matches with our direct
computation.

Example 2 Consider A =

1 x x2

x x2 1
1 x2 x

, and so perm(A) = x5 + x4 + x2 + x.

Therefore, we now have det(A) 6≡ 0 (mod 2)
Step 1: Find Q such that QA has all leading principal minors are non-zero. In

this case, we will get Q =

1 0 0
0 0 1
0 1 0

 =⇒ QA =

1 x x2

1 x2 x
x x2 1


Step 2: Consider matrix C whose all entries are same as A except the last

one which is incremented by y, that is C =

1 x x2

1 x2 x
x x2 1 + y

, then perm(C) =

perm(A) + yperm(A[{̂3}, {̂3}]). Again construct C′ same as A[{̂3}, {̂3}] but replace

the last entry incremented by y′, that is C′ =
(

1 x
x x2 + y′

)
=⇒ perm(C′) =
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perm(A[{̂3}, {̂3}]) + y′perm(A[{̂2, 3}, {̂2, 3}]). Written as one equation, we get

perm(A) = perm(C)− y
(
perm(C′)− y′a11

)
In this equation, both C, C′ are matrices with det ≡ 0 (mod 2) with the correct choice
of y, y′, which were:

y0 = perm(A)perm(A[{̂3}, {̂3}])−1 (mod 2) = (x5 + x4 + x2 + x)(x4 + x3 + x2) = x3 + 1

y′0 = perm(A[{̂3}, {̂3}])perm(A[{̂2, 3}, {̂2, 3}])−1 (mod 2) = x2 + x

So we can compute perm(C) and perm(C′) by above method and substitute it
into previous equation to get perm(A) (mod 4)

4.2 Permanent via Interpolation

We now demonstrate another technique to compute permanent modulo 2k, which
doesn’t resort to computations over exponentially sized fields. This proceeds by
choosing small degree polynomial p(x). The techniques developed in this section
are new and hence interesting by themself.

First we mention a result from [JVW20] used to interpolate the coefficients of a
polynomial.

Lemma 4.2.1. ([JVW20] Lemma 3.1) Let F be a finite, characteristic 2, field of order q.

∑
a∈F∗

am =

{
0 if q− 1 - m
1 otherwise

This dichotomy allows us to extract coefficients of any integer polynomial.

Lemma 4.2.2. ([JVW20] Corollary 3.2) Let f (x) = ∑d
i=0 cixi be a polynomial with integer

coefficients and q > d + 1, then for any 0 ≤ t ≤ d,

∑
a∈F∗

aq−1−t f (a) = ct (mod 2)

But this gives us the coefficients modulo 2 only. How do we get coefficients
modulo 2k?

The crucial observation here is that the above sum was computed over F. So
instead we do so over R by identifying a copy of F∗ ↪−→ R, and then we have

∑
a∈F∗

am =

{
2αm if q− 1 - m
2βm + 1 otherwise

where αm, βm ∈ R.
Now we use repeated squaring method to obtain our desired modulo 2k result

Lemma 4.2.3. ∀m ≥ 0, k ≥ 1

∑
a1,...,a2k−1∈F∗

(a1a2 · · · a2k−1)m =

(
∑

a∈F∗
am

)2k−1

=

{
0 (mod 2k) if q− 1 - m
1 (mod 2k) otherwise

Note. We remind the reader that the computation here is done over Rk
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Proof. Fix any m ≥ 0. Clearly (2αm)2k−1 ≡ 0 (mod 2k).
Suffices to show (2βm + 1)2k−1 ≡ 1 (mod 2k). This follows from induction on k.

For k = 1 the result holds as stated above. Assume that for some k ≥ 1, the result
holds. Then we have (2βm + 1)2k−1

= 2kγm,k + 1 where γm,k ∈ R

(2βm + 1)2k
=
(
(2βm + 1)2k−1

)2
= (2kγm,k + 1)2 = 1 (mod 2k+1)

Using this we can interpolate coefficients of an integer polynomial as follows:

∑
a1,...,a2k−1∈F∗

(a1 . . . a2k−1)q−1−t f (a1 . . . a2k−1) = ct (mod 2k)

Finally let A(x) be a n× n matrix of integer polynomials and the permanent poly-
nomial be

perm(A(x)) =
N

∑
i=0

cixi

From the above lemma it follows that

∑
a1,a2 ...∈F∗

(a1a2 · · · )q−1−tperm(A(a1a2 · · · )) = ct (mod 2k)

provided that our field F is of order atleast N + 2. For this, fix l = d log log N
log 3 e

so that 22.3l
> N + 1. Hence the field obtained from the irreducible polynomial

p(x) = x2.3l
+ x3l

+ 1 ([Lin13] Theorem 1.1.28) serves the purpose. It suffices to com-
pute |F∗|2k−1

= O(N2k−1
) many permanents over Rk to obtain all the coefficients ct

modulo 2k, all of which can be computed in parallel. Hence, we can compute the
permanent of A modulo 2k in ⊕L.

Note. The order of F in this technique is exponentially smaller than in our previous
technique.
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Chapter 5

Extensions

Imagination is more important than
knowledge. Knowledge is limited,
Imagination encircles the world.

Albert Einstein

Finally, we discuss some other indirect applications of the permanent algorithm.
We notice that a similar approach gives us an algorithm to compute Hafnians mod-
ulo 2k of symmetric matrices of integers. Unfortunately, unlike the case of the per-
manent, we weren’t able to extend this to a parallel algorithm. But nevertheless it
gives a direct proof of the fact that counting number of perfect matchings modulo
2k, in any general graph, is in P, as proved in [BKR09].

5.1 Hafnians

Similar to permanent and determinant, another pair of well-studied algebraic analo-
gous functions on a matrix are hafnians and pfaffians. Let A = (aij) be a symmetric
2n× 2n matrix over integers, hafnian is defined as

hf(A) =
1

2nn! ∑
σ∈S2n

n

∏
j=1

aσ(2j−1),σ(2j) (5.1)

Note that the diagonal entries of A don’t contribute in the calculation of hafnians
and hence we can assume them to be 0. Let B = (bij) be a skew-symmetric 2n× 2n
matrix, pfaffian is defined as

pf(B) =
1

2nn! ∑
σ∈S2n

sgn(σ)
n

∏
j=1

bσ(2j−1),σ(2j) (5.2)

But notice that hf(A) ≡ pf(A) (mod 2). [MSV04] have shown that pf(A) can be
computed in NC and hence as an immediate consequence we get that hf(A) (mod 2)
can be computed in NC. We can reduce the computation of hafnian to several hafni-
ans of smaller submatrices using the following lemma. Denote by A[i, j] the matrix
obtained from A by deleting rows i and j, columns i and j.

Lemma 5.1.1. ([HN18] Lemma 2.2)

hf(A) = ∑
j:j 6=i

aijhf(A[i, j])

hf(A) = aijhf(A[i, j]) + ∑
pq:p,q 6∈{i,j},p 6=q

(aipajq + aiqajp)hf(A[i, j, p, q])
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Assume pf(A) ≡ 0 (mod 2), then det(A) ≡ 0 (mod 2) and we can find a vector
v ∈ Z2n

2 such that Av = ATv = 0 (mod 2). Assume without loss of generality
v1 = 1.

Let ri, ci denote the ith row and ith column of A respectively.

• Construct A′ by replacing first row with ∑ viri and then replacing first column
with ∑ vici

• Construct Ai by replacing first row with ri and first column with ci.

Then we check that

hf(A′) = ∑
j>1

(
∑
i≥1

viaij

)
hf(A[1, j])

= ∑
i≥1

vi

(
∑
j>1

aijhf(A[1, j])

)

= ∑
j>1

a1jhf(A[1, j]) + ∑
i>1

vi

(
∑
j>1

aijhf(A[1, j])

)
= hf(A) + ∑

i>1
vihf(Ai)

Computing hf(A′): since ATv = 0 (mod 2) =⇒ ∑i≥1 viaij = 2bj (mod 2k) for
some cj ∈ Z and hence

hf(A′) = ∑
j>1

(
∑
i≥1

viaij

)
hf(A[1, j])

= ∑
j>1

2bjhf(A[1, j])

=⇒ hf(A′) (mod 2k) = 2

(
∑
j>1

bjhf(A[1, j]) (mod 2k−1)

)

Computing hf(Ai):

hf(Ai) = aiihf(A[1, i]) + ∑
pq:p,q 6∈{1,i},p 6=q

2aipaiqhf(A[1, i, p, q])

=⇒ hf(Ai) (mod 2k) = 2

 ∑
pq:p,q 6∈{1,i},p 6=q

aipaiqhf(A[1, i, p, q]) (mod 2k−1)


Thus, we can compute hf(A) (mod 2k) provided pf(A) ≡ 0 (mod 2).
Now if pf(A) 6≡ 0 (mod 2), then we can find (i, j), i 6= j such that hf(A[i, j]) 6≡

0 (mod 2). Consider the matrix C where all entries are same as in A except aij
is replaced with aij + 1, then we get hf(C) = hf(A) + hf(A[i, j]). Since hf(C) ≡
0 (mod 2), we can compute hf(C) (mod 2k) as described above and since hf(A[i, j])
is a (n− 2)× (n− 2) matrix, we compute it’s hafnian recursively modulo 2k. There-
fore, we can compute hf(A) = hf(C)− hf(A[i, j]) (mod 2k).

This gives us a P algorithm for computing hafnians modulo 2k.
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5.2 Counting perfect matchings modulo 2k

Let G be an undirected graph and AG denote the adjacency matrix of the graph
G. If G has odd number of vertices, then clearly there aren’t any perfect matchings.
Otherwise it is straight-forward to see that number of perfect matchings in G is same
as the value hf(AG). Hence the result follows.
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Chapter 6

Disjoint Paths on Maps

Nothing is more practical than a good
theory

Vladimir Vapnik

As discussed earlier, the disjoint paths problem is NP hard for directed graphs in
general but Schrijver remarkably showed that if restricted to planar graphs, then we
can find k-disjoint paths in polynomial time [Sch94] for any fixed k. We discuss this
paper informally in this chapter, which is a digression from our main bridge but it
is yet another beautiful application demonstrating how sophisticated algebraic tools
can help us model combinatorial problems leading to polynomial time algorithms.

We shall refer to planar directed graphs as maps. This should also draw the
reader’s attention to the well-known fact that maps can be drawn on both a flat
surface or a sphere. More precisely, any planar graph can be embedded on a S2 and
vice-versa, because sphere with a point removed is homeomorphic to plane. There-
fore, from here onwards we shall refer to our underlying surface as a plane and
sphere interchangeably as required.

6.1 Ideas and Intuition

Before we move onto graphs, let us abstractly consider paths to develop some intu-
ition for the notion we introduce later on, referred to as homologous paths. Fix points
{s1, t1 | 1 ≤ i ≤ k} on a sphere and consider paths Pi from point si to point ti as
thread which can be stretched or squeezed as required.

Let P = {Pi} and Q = {Qi} be two set of paths from si to ti. We call P ho-
mologous to Q if there is a way to transform P to Q without breaking/gluing the
threads. For example: figure 6.1 shows homologous paths whereas figure 6.2 shows
non-homologous paths.

FIGURE 6.1: Homologous Paths
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FIGURE 6.2: Non-Homologous Paths

We shall now precisely describe this notion of homologous paths over graphs.

6.2 Flows on graphs

We are going to formalize this notion of homologous paths via the way of flows on
graphs, so let us take a moment to re-visit flows and see where the known techniques
fail.

Assigning a unit capacity to all the edges of G, we see that if there exists a flow
of value atleast 1 from s to t, then we can find a path from s to t, for any two vertices
s and t.

Now suppose that, instead, we are given sets of vertices S = {si}i≤k and T =
{ti}i≤k such that S ∩ T = φ, then we can add a super source s and a super sink t,
and connect s to all sources in S and all sinks in T to t and so we just have to find a
flow of value atleast k from s to t. But notice that, when extracting paths from this
flow, we just get disjoint paths from sets S to T and not particularly from si to ti , as
shown in the example below. Moreover, adding a super-source and super-sink, can
possibly destroy the planarity of the graph, for e.g. see figure 6.3.

Therefore, we need to add more constraints to our above system so that we get
paths for each (si, ti) pair. We do this by distinguishing the flow out of si (into ti)
with distinct colours. For instance we can say that unit "red" flow from s1 to t1 and
unit "blue" flow from s2 to t2 and so on. Let us identify these colours with variables
gi, 1 ≤ i ≤ k. If a flow of unit g1 is going out of a vertex v, then we’d also like to say
that a flow of unit g−1

1 is going in v. And finally we should be able to "sum" these
outgoing/incoming flows to compute net flow at v. Hence, we want to impose the
structure of (free) group Gk on variables {g1, . . . , gk}.

s1 t1

s2 t2

FIGURE 6.3: Distinguishing flows using colours

Formally, let G = (V, E) be a map, with (s1, t1), (s2, t2), . . . (sk, tk) pairs of vertices.
Assume without loss of generality that each si and ti has degree 1.

We call a function φ : E→ Gk flow if:

• Distinct unit flow in/out of each terminal: φ(e) = gi if e = (si, u) or e = (v, ti)



Chapter 6. Disjoint Paths on Maps 30

• Conservation at all other vertices: for every vertex v, φ(e1)
ε1 φ(e2)ε2 . . . φ(el)

εl =
1 where e1, . . . , el are the edges incident on v in clockwise order and εi = 1 (or
−1) if v is tail of ei (or v is head of ei)

1

g 3
g1 g −12

1

g −
13

g
2 g −

11

g 2

g1

g1

g2

g3

FIGURE 6.4: Interpretation of flow function

Naturally, given a solution Π = (P1, . . . , Pk), we can associate a flow ψΠ with it,
which sends a flow of unit gi along the path Pi, 1 ≤ i ≤ k.

But it is easy to find some flow in a graph by brute force. So conversely, we need
a way to transform a flow into a solution, if possible.

6.3 Disjoint paths from a flow

We are given a flow φ : E→ Gk. We are going to transform this flow by "shifting via
faces".

Let F is the set of all faces and fix a face F0 ∈ F. Now consider any function
f : F → Gk such that f (F0) = 1. We modify this flow is by conjugating by f as
follows: f (L)−1φ(e) f (R) for every edge e, where L and R are the left and right faces
of e respectively. This has the effect of pulling the threads f (L) and appending the
threads f (R) to the edge e.

s1 t1

s2 t2

g1 1

g2 g2

s1 t1

s2 t2

FIGURE 6.5: Shifting via Faces

Formally, we say two flows φ, ψ are homologous if there exists a function f as
above such that we can transform φ to ψ using these face shifts prescribed by f , that
is
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ψ(e) = f (L)−1φ(e) f (R)

for each edge e where L, R are left and right faces of the edge e respectively. Also
observe that homologous criterion is actually an equivalence relation on the set of
all flows.

Now suppose we could modify φ and obtain a new flow ψ such that ψ(e) ∈
{1, g1, . . . , gk}, then it is clear that we can extract edge-disjoint paths from our ψ flow.
This is our main goal - to transform φ (using the above described transformation
rule) to obtain a new flow with this additional restriction.

But instead of a direct approach, we will translate the transformation to dual of
the graph, which makes the formulation easier and more intuitive - cycles passing
through a fixed vertex. So consider the dual graph G∗ and we translate our problem
from planar to its dual as follows:

• We had a function (flow) φ on E so now we get a function φ∗ on E∗: for each
edge e ∈ E, we have an edge e∗ ∈ E∗; set φ∗ : E∗ → Gk as φ∗(e∗) = φ(e).

• We had a function f on the faces of G so now we get a function a f on the
vertices of G∗.

• In shifting via faces, we had ψ(e) = f (L)−1φ(e) f (R) where L, R were left and
right faces of e respectively. In the dual graph, this will translate to: ψ∗(e∗) =
f (L)−1φ∗(e∗) f (R) where e∗ = (L, R).

Therefore, given a directed graph G with a fixed vertex r and two functions
φ∗, ψ∗ : E → Gk, we say ψ∗ is cohomologous to φ∗ if there exists a function
f : V → Gk such that f (r) = 1 and for each edge e∗ = (u, v)

ψ∗(e∗) = f (u)−1φ∗(e∗) f (v)

v

FIGURE 6.6: Transforming into dual

We will show that there exists a polynomial time algorithm (for any directed
graph and not necessarily planar) to transform our function φ∗ into ψ∗ (if one exists)
so that ψ∗(e∗) ∈ {1, g1, . . . , gk}, by finding a function f : V → Gk
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We will show how to do this transformation in the next section but let us see first
how this helps. We translate back. From ψ∗ we can obtain a flow ψ : E → Gk by
setting ψ(e) = ψ∗(e∗). We have ψ(e) ∈ {1, g1, . . . , gk}. But that immediately gives
us edge-disjoint paths from each si to ti, as discussed above. (It is also interesting to
note that these edge-disjoints paths will also be non-crossing).

To obtain vertex disjoint paths, we need to do a little more work. We shall use the
fact that the cohomologous transformation can be done for any directed graph. So
let us see how to rectify this. Consider how vertex-disjoint paths and edge-disjoint
paths look like in the dual graph.

We see that if the paths were vertex-disjoint then each face in the dual graph
will have edges only of a single colour or no colours (if none of the paths used that
vertex). But if two paths shared a vertex, then the face corresponding to that vertex
will have edges of different colours (as in the example above).

Main idea: Net flow across any two vertices of a face should be zero or unit.

Before we apply our transformation, we join all the vertices on this face by chords
as follows: let u and v be any two vertices on a face, and let π = (e∗1)

ε1 . . . (e∗l )
εl be

the (undirected) path from u to v obtained by going from u to v in the clockwise
direction along this face. Then add an edge eπ from u to v.

Furthermore, we also need to specify the φ∗ value of these new edges, which
we simply set to: φ∗(eπ) = φ(e1)

ε1 . . . φ(el)
εl . Now we do the transformation of

φ∗ to ψ∗ such that ψ∗(e∗) ∈ {1, g1, . . . , gk} (our old requirement) and ψ∗(eπ) ∈
{1, g1, g−1

1 , . . . , gk, g−1
k } (new requirement).

v
eπ

e π
′

FIGURE 6.7: ψ∗(eπ) = g2g−1
1 , ψ∗(eπ′) = g−1

2

Let us justify this new requirement and see how it helps in obtaining vertex-
disjoint paths, using the above example 6.7. We have marked undirected paths π, π′

and added extra edges eπ, eπ′ and so we get that ψ∗(eπ) ∈ {1, g1, g−1
1 , . . .} iff this

face had only one (or none) colour edges. Hence adding extra edges and this new
restriction gives vertex-disjoint paths.



Chapter 6. Disjoint Paths on Maps 33

6.4 Dual and cohomology

Given a graph G (not necessarily planar), a fixed vertex r ∈ V and a function φ : E→
Gk, we note that φ lifts to a homomorphism φ̃ : π1(G, r) → Gk by simply assigning
to each cycle

C = (r
a1−→ v1

a2−→ v2 → · · ·
an−1−−→ vn−1

an−→ r) 7→ φ(a1)φ(a2) . . . φ(an)

.
We ask the question if there is a function ψ : E → Gk such that ψ̃ = φ̃ and

moreover ψ(e) ∈ {1, g1, . . . , gk}?
Here we have assumed that for every edge e = (u, v), we have added an edge

e−1 = (v, u) and assign φ(e−1) = φ(e)−1. We observe that: ψ̃ = φ̃ iff ∃ f : V →
Gk such that f (r) = 1 and ψ(e) = f (u)−1φ(e) f (v) where e = (u, v). We will re-
formulate the general problem as follows: Given φ : E → Gk, find a function f :
V → Gk such that

• f (r) = 1

• f (u)−1φ(e) f (v) ∈ Γ(e) for every e = (u, v)

where Γ(e) ⊆ Gk is such that if x ∈ Γ(e) and y is a substring of x then x ∈ Γ(e).
We call such functions f feasible. It is not clear apriori how to build a feasible

function. So we define pre-feasible functions. Call a function f : V → Gk pre-feasible
if:

• f (r) = 1

• If f (u)−1φ(e) f (v) 6∈ Γ(e) for some e, then f (u) = f (v) = 1

With this, we get a head start as f ≡ 1 is a pre-feasible function. But this is a trivial
function to start with. So, fix an edge e = (u, v) and consider the function fe defined
as fe(u) = φ(e) and fe(w) = 1 for each w 6= u ( fe might not be pre-feasible).

Using the lattice structure on Gk, we obtain a lattice structure on set of all func-
tions f : E → Gk. There exists a O(|V|2) time algorithm, to change fe to the smallest
pre-feasible function f̃e. So we get a collection f̃e of pre-feasible functions. We con-
struct a feasible function out of them as follows, by solving a special case of 2SAT.

Call a pair (e, e′) compatible if f̃e ∨ f̃e′ is finite and pre-feasible. Call an edge bad
if φ(e) 6∈ Γ(e).

We try to find a subset X of E such that every pair in X is compatible and for each
bad edge e: e or e−1 is in X. If X is empty, then no feasible function exists. Otherwise,
finally set f = ∨e∈X f̃e, and f is the feasible function as required.

6.5 Guessing flows

Now that we know how to find a solution from a flow, we need to find some "candi-
date" flows. We are going to exhibit poly(n) flows such that if there was a solution,
then by applying our transformation to one of these flows, we would get a solution.

Consider any edge e, not incident to any of the terminals. Contract it to obtain a
new graph G′. Now suppose we have a flow φ′ on G′, then there is a unique flow φ
on G obtained by setting φ( f ) = φ′( f ) for all edges f except e. And φ(e) is obtained
by flow conservation at the corresponding vertices - as in example below.
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e

FIGURE 6.8: Contract Edges

Consider the flow on this new graph, as in example below. We want to obtain
back a flow on the old graph. We already know the φ value of all edges (except the
one which was contracted) By flow conservation on the tail of this edge e, we get:
g1φ(e)−1g−1

2 = 1 =⇒ φ(e) = g−1
1 g2 and g−1

1 g2 means that g1 going out and g2
coming in - which matches with our intuition of this flow.

e

FIGURE 6.9: Obtaining unique flow from contracted edge

So it suffices to obtain these set S of poly(n) flows on the graph where all edges
(except the ones incident on terminals) have been contracted. This we do by brute
force as there are only nO(k) possible flows in this little graph. The set of flows so
obtained has the property that if a solution exists, then it must be homologous to
one of the flows in S.

6.6 Main Algorithm

Thus we can obtain a solution for k-disjoint paths in O(nk) time. To summarize:

• Enumerate all the candidate flows in S

• For each flow φ ∈ S, translate it to the dual graph φ∗

• Add auxillary edges (for vertex-disjointness) to the dual graph

• Now find a feasible function, if one exists, and obtain ψ∗ by transforming φ∗

via f and translate back ψ∗ to the original graph ψ to get a solution

• If none of the flows gave a solution, then output NO disjoint paths

6.7 Extensions

The above algorithm can be easily extended to bounded genus graphs. It only suf-
fices to carefully enumerate all the flows and the rest of the algorithm remains the
same.

Later Schrijver also showed that by introducing relations amongst the group el-
ements, we can also find partially disjoint paths [Sch15].
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Chapter 7

Conclusion

May all be Happy ♦ May all be free
from illness;
May all see what is Auspicious ♦ May
no one Suffer.

Upanishads

We started by introducing the combinatorial graph problem of finding disjoint
paths and the algebraic problem of computing permanent mod powers of 2. Then we
discussed a bridge using which we connect these two. Following which we demon-
strated an application of this bridge - shortest 2-disjoint paths problem [BH19].

Our first goal was to generalize this problem by putting additional restrictions
on these paths so that they pass through given edges. Adjusting our perspective,
we realized this as a problem of finding disjoint cycles passing through given ver-
tices/edges. In particular, we exhibited an algorithm to find shortest 2-disjoint cycles
passing through given vertices/edges, which also answers our above generalization.
Additionally, we also presented an algorithm to find a shortest disjoint cycle pass-
ing through any given fixed number of vertices/edges, although this was already
reminiscent in the work of [Wah13].

Our next goal was to strengthen the bridge, that is to exhibit a parallel algorithm
to compute permanent of matrices of integer polynomials. We started by recog-
nizing the appropriate algebraic structure R over which we can present a parallel
algorithm to compute permanent modulo 2k. Then we saw two techniques to get
permanent over Z[x] (mod 2k) from R (mod 2k). First method was to choose a large
enough irreducible polynomial for our ring R. Another method was to interpolate
over the ring R, which was an extension of the commonly known interpolation over
finite fields. Finally, this yields a (randomized) parallel algorithm for:

• finding shortest 2-disjoint paths

• finding a shortest disjoint cycle

• finding shortest 2-disjoint cycles

The more general question of finding shortest k disjoint cycles for k ≥ 3 passing
through any given vertices/edges still remains open. Can we use the framework
presented in here, of using combination of permanents of different pattern graphs to
answer more problems? On the other hand, the problem of computing permanent
over arbitrary commutative rings of characteristic 2k for k > 1 also seems interesting.
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